
© 2001 NET U Magazine

Fawcette Technical Publications

Issue November 2001
Section
Main file name Nu0001at4.doc
Listing file name
Sidebar file name
Table file name
Screen capture file names Nu0001f1.bmp
Infographic/illustration file names
Photos or book scans
Special instructions for Art dept.
Editor
Status
Spellchecked (set Language to English U.S.)
PM review
Character count
Package length
ToC blurb .NET radically transforms existing

programming models. Learn how this
overhaul can change how your organization
works.

Overline:

Byline:
By Juval Lowy

Head:

.NET Overhauls App

Frameworks
Deck:

This new technology

jump starts e-

commerce.

Microsoft’s .NET doesn’t simply tweak a technology here and enhance another one there.

It’s not about patching something together with bailing wire or duct tape—this bad boy

starts from the ground up and rebuilds completely most of Microsoft’s existing

technologies. .NET provides a new set of application-development frameworks, including

Web Services, ASP.NET, Windows Forms, ADO.NET, and Enterprise Services..

 In this article you’ll learn .NET’s application frameworks core concepts, along with its

benefits and advantages. Whenever possible, I’ll contrast .NET with existing application

frameworks. I’ll discuss the objectives of the frameworks, so you’ll know what the

application frameworks are all about and be able to make educated decisions on adopting

them in your organization.

 Here are some of the changes: As the framework for developing Windows user-

interface applications, .NET Windows Forms replace Microsoft Foundation Classes

(MFC) and Visual Basic 6.0. ASP.NET replaces ASP for creating dynamic Web pages,

and ADO.NET replaces ADO/OLEDB for data access. A new set of languages,

particularly C# (pronounced C-Sharp) replace Visual C++ (and C++ itself). VB6 has

been completely deprecated. You won’t need to worry about Windows programming

(Win32 API) because.NET exposes its own rich set of application-programming classes

and interfaces. .NET has built-in support for developing components, so COM/DCOM

and ATL also disappear.

 The changes from an existing technology to the .NET equivalent, such as from ASP to

ASP.NET, are substantial. The new technology is radically different, not just in syntax

but also in the programming model itself. But .NET has more to it than improving

existing programming models and technologies. The most exciting new capability is its

support for Web Services. .NET Web Services support can potentially transform e-

commence into the next information-technology revolution. In addition to the technology

itself, the development environment’s user interface (called IDE, for Integrated

Development Environment) differs drastically from all previous versions of Visual

Studio’s environment.

The IDE

 The Visual Studio IDE looks overwhelming at first. However, you can customize the

IDE, and you can select from several available IDE templates, such as Visual C++ 6.0, to

ease the transition. Many changes from the VS6 IDE provide you with more rapid

development and better tools. The new IDE offers improved ergonomics, including

toolbars that appear only when you require them and are minimized when not in use. The

IDE is better integrated. All .NET languages, such as C# and VB.NET, now use the same

development environment, and the IDE can display almost any development-related

information such as system processes, threads, message queues, performance counters,

system services, Web Services, control panel applets, database tables, and query results.

 On of the most impressive and important improvements in the IDE is the debugger. It

includes all the old windows, such as call stack and threads, in addition to new windows,

and you can tab and dock all of them together. The class view is also improved, and it

now shows namespaces, classes, base classes, methods and properties, interfaces, and

available override-ables, which are virtual methods from the base class. A new object

browser—similar to the one available in VB6—can display information about your

project or any other assembly, often saving you the trouble of using Help. You edit most

things using the enhanced properties window. VS6 only allowed you to store one item in

the clipboard; you can now store as many clips as you like in the Clipboard Ring (see

Figure 1).

Collapse Code

But the IDE has many new features, too. The code editor can collapse blocks of code and

hide them from view, similar to collapsing folders in the file Explorer, allowing you to

focus only on the method you want. The code editor can also present line numbers. The

IDE checks what you type constantly, and if it finds a compilation problem, it underlines

the code the way Word’s spellchecker does when you type misspelled text. You’ll see

compilation warning and errors as code underlining, and you can get the warning or error

as a tool tip on that underlining.

 A special help window keeps track of your activities and suggests relevant help links

dynamically. A task list window lists remaining tasks such as complication errors or any

other entries the developer puts in. You also have built-in support for documentation. If

you enter inline comments in your code using special XML tags, VS.NET can present

you with auto-generated, well-formatted Web page documentation of your project.

Web Services Support

 .NET also offers Web Services, which now allow a middle-tier component at one site

to invoke methods on a middle-tier component at another site as easily as if the remote

component were local. Today, Web sites have a hard time interoperating among

themselves. Even though most Web sites are the same architecturally, and a given system

is more or less homogeneous in technology (platform, language, component technology),

components developed in one technology can’t invoke methods on components

developed in another technology.

 Firewalls also disallow binary calls. Developers today handcraft interoperability

solutions between businesses. These solutions are proprietary, they provide singular

relief, and they’re expensive and time-consuming to implement. Web Services address

these problems elegantly and simply.

 The underlying technology facilitating Web Services is a serialization of the calls into

XML packages using protocols such as Simple Object Access Protocol (SOAP) or HTTP

GET/POST. XML-based calls are plain text, so you can make them across firewalls. This

fact makes them an ideal transport mechanism for Web Services calls. .NET support for

Web Services completely encapsulates the underlying Web Services complexity from

both the service implementor and its consumer. Using .NET Web Services, you can

create an application that combines Web Services from multiple Web sites, so you can

view an entire Web site as one component in your application.

 .NET hides the required details successfully from the client and the server developer.

All a Web Service developer must do is use the WebMethod attribute on the public

methods exposed as Web Services. The MyWebService Web Service provides the

MyMessage service, which returns the string “Hello” to the caller. To qualify as a Web

Service, use the WebMethod attribute on the exposed Web Services and optionally derive

from the WebService base class:

using System.Web.Services;

public class MyWebService : WebService

{

 public MyWebService(){}

 [WebMethod]

 public string MyMessage()

 {

 return "Hello";

 }

}

On the consumer side, all the developer has to do is point Visual Studio.NET to the

remote Web Service and have it generate a wrapper class that looks and feels like a local

class, but actually forwards the call to the remote service.

Develop Rich UI Apps

Although .NET’s marketing effort concentrates heavily on demonstrating how to build

Web applications in .NET, Microsoft isn’t abandoning the desktop market. .NET includes

a comprehensive framework for developing rich UI client applications for Windows

called Windows Forms. Windows Forms projects are somewhere between MFC

applications and VB6. These projects provide VB6’s productivity-oriented environment

and ease of development—such as the properties window—but the code layout is much

more exposed, as in an MFC application where you see controls binding to handling

methods.

 Using Windows Forms, you can build almost every kind of Windows application,

including ActiveX controls, SDI, (Single Document Interface, like Notepad) and MDI

(Multiple Document Interface) applications, and custom controls. But the default is a

dialog-based application. If you use VS.NET, you can build Windows Forms using only

C# or VB.NET without managed C++. A Windows Forms project lets you drag and drop

controls such as buttons and edit boxes to a form layout, and it generates the binding code

for you. Interestingly enough, unlike a classic Windows application where you map user

events such as a button click to messages handled in your code, a Windows Forms

control handles events the .NET way—you map the event to a .NET delegate bound to a

method in your class.

 As in MFC, .NET provides many base classes in the System.Windows Forms

namespace—including Button, DataGrid, and CheckBox—that you can use as is or

derive and extend for your own need. Finally, Windows Forms provide a new

development service called Visual Inheritance. You can derive your form from an already

existing component in a binary assembly. The user interface layout associated with the

base component, such as buttons and controls on the form, is displayed in the visual

editor in a special way. You can’t change these controls, but it’s possible to see where

they are and figure out how best to add the controls. This feature is essential in

applications involving hundreds of forms.

ASP .NET

 Another new .Net application framework is ASP.NET, which you use to develop

dynamic HTML pages. ASP.NET a complete overhaul of classic ASP. Classic ASP, a

blend of static HTML and script code, executing either on the server or on the browser

side, has many limitations and deficiencies. The resulting programming model is messy

because it doesn’t separate clearly user interface code from business logic, and it has

many design limitations. ASP projects often result in unmaintainable spaghetti code that

doesn’t scale, both in performance and management. Interdev (ASP’s development tool)

also leaves much to be desired compared with the Visual Studio tools. Interdev has

limited debugging capabilities and requires developers to master HTML for even simple

rendering.

 ASP.NET’s goal is to allow you to develop Web applications as easily as you develop

desktop applications. You simply drop controls on a form, called a Web Form, and bind

the control properties to object members and event handlers. The controls (also called

server-side controls) execute on the server and are smart enough to know how to render

themselves in HTML and even accommodate different browsers—all without the

developer writing a single line of code.

ASP.NET collects user input on the browser side and posts it back to the server, where

it’s stored as the form class data members and properties. The resulting programming

model is manageable, extensible, and object-oriented, much like Windows Forms. ASP

.NET developers no longer need to know HTML because the controls do the rendering.

In addition, there is a clear separation of the user interface (the form layout in the visual

designer) from the business logic, the class behind the form.

You write the class associated with the Web Form in a .NET language such as C#, and

this code compiles at run time to native code, providing a significant performance boost

compared with the interpreted classic ASP script.

 ASP.NET developers are first-class citizens and can use the rich set of base classes

available with the .NET platform. Developers can call and step into other components in

other assemblies and take advantage of the VS.NET Integrated Development

Environment, including the debugger. In addition to what I’ve already described,

ASP.NET provides many other new features: automatic validation controls that execute

on the client side to validate input and save round trips to the server, and extensive

tracing. ASP.NET also offers control values caching, automating data binding of

controls, such as a grid, to a data source. You’ll find numerous new controls, such as the

Calendar, and you can define easily your own custom server controls.

ADO.NET

 Another new .NET application framework is ADO.NET, a set of classes you use to

access data sources such as databases. ADO.NET is based on a new object model. Unlike

classic ADO, it’s oriented and optimized for disconnected remote access to the data

sources over the Internet. ADO.NET decouples the data consumer from the data source

and the platform it resides on by introducing a level of indirection using two classes,

DataSet and DataAdapter.

 DataSet is the basic data-container object, containing structured information on a set of

tables. You associate each DataSet object with a particular subclass of DataAdapter. That

subclass is tailored to interact with a particular data source, such as SqlDataAdapter. This

design pattern provides the data source indirection because the DataSet interacts only

with the generic interface of the DataAdapter base class.

 To change a source type, the data consumer simply associates the DataSet with a

different DataAdapter. The DataSet caters to doing disconnected work over the Internet

because it can cache whole portions of a database and perform the synchronization once

changes are committed to the database on the server. While in transit, the data is

represented in XML and can pass through firewalls over a regular HTTP port. .NET Web

Services methods can return DataSets as parameters, enabling remote data access for

Web Services consumers. Another benefit of the DataSet class is you can access tables as

a property of the DataSet, so you don’t have to know—or at least handcraft—SQL

queries.

 That said, you can still use ADO.NET for whatever you used classic ADO for—

namely, same-machine or intranet data access and manipulation. VS.NET provides visual

designer support for setting up a connection with a data source; all you do is drag and

drop a data source (a data base or a table) to your project from the Server Explorer, and

VS.NET creates the template code for you to access and bind to that data source.

Enterprise Services Key to .NET

.NET relies on COM+ to provide it with component services such as instance

management, transactions, activity-based synchronization, granular role-based security,

disconnected asynchronous queued components, and loosely coupled events. In fact,

Microsoft renamed COM+ in .NET as Enterprise Services, which better reflect its pivotal

role in .NET.

 A .NET component using COM+ services is called a serviced component, and it must

derive from the .NET base class ServicedComponent. You can configure a serviced

component to use COM+ services in two ways. The first is similar to how you do it in

COM: You derive the component from ServicedComponent, add the component to the

Component Services Explorer, and configure it there. The second way is to apply special

attributes to the component, configuring it at the source-code level. When you add the

component to the Component Services Explorer, it’s configured automatically according

to the values of those attributes.

 .NET allows you to apply the serviced component attributes with great flexibility.

When you don’t configure a service with attributes, it’s configured according to the

default settings when you add that component to the Component Services Explorer. You

can apply as many attributes as you like, although you can apply some COM+ services

only through the Component Services Explorer. These services are mostly deployment-

specific configurations, such as persistent subscriptions to COM+ Events and allocation

of users to roles.

 In general, almost everything you can do with the Component Services Explorer you

can do with attributes. The recommended usage pattern for serviced components is to

enter as many design-level attributes into the code as possible—such as transaction

support and object pooling—and use the Component Services Explorer to configure

deployment-specific details. For example, to configure a serviced component to use

object pooling, use the ObjectPooling attribute. You can provide optional parameters for

pool parameters:

[ObjectPooling(MinPoolSize = 3,MaxPoolSize = 10)]

public class MyComponent :ServicedComponent

{…}

From a configuration management point of view, the .NET integration with COM+ is

better than COM under VS6 because .NET allows you to capture your design decisions in

your code, instead of storing them separately in the Component Services Explorer.

About the Author:

Juval Lowy is a software architect and the principal of IDesign, a consulting company focused on
.NET design and .NET migration. Juval also conducts training classes and conference talks on
component-oriented design and development processes. He wrote “COM and .NET Component
Services—Mastering COM+” (O’Reilly). Reach him at www.componentware.net.

Captions:

Figure 1.

Get it all Here. The Visual Studio .NET IDE contains everything you need—and then
some. Some of the support windows any Visual Studio project can display include the
Object Browser, Clipboard ring, integrated Dynamic Help topics and search capabilities.
Even though the IDE presents an overwhelming amount of information in one place, it’s
completely manageable through an intuitive tabbed, retracting window management
scheme.

Listing 1:
Provide a Web Service. The MyWebService Web Service provides the MyMessage
service, which returns the string “Hello” to the caller. To qualify as a Web Service, use
the WebMethod attribute on the exposed Web Services, and optionally derive from the
WebService base class.

using System.Web.Services;

public class MyWebService : WebService

{

 public MyWebService(){}

 [WebMethod]

 public string MyMessage()

 {

 return "Hello";

 }

}

Pullquotes:

The new technology is radically different, not just in syntax but

also in the programming model itself.

NET Web Services support can potentially transform e-

commence into the next information-technology revolution.

Using Windows Forms, you can build almost every kind of

Windows application.

